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Abstract

The regularized resolvent transform (RRT) has been applied in a novel way to J-resolved spectra. This involves the direct

calculation of the 45� projection without constructing the 2D spectrum. The results show a significant resolution enhancement over

that obtained by the 45� projection of a 2D Fourier spectrum, even for much larger signals. In particular, RRT is able to resolve

peaks that belong to different overlapping multiplets in a very crowded spectral region, where the conventional technique fails for

any signal size. The resolving power of this method along with the significantly shorter signals required, make this method a

powerful tool in spectral assignment.
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1. Introduction

While coupled proton spectra contain a lot of infor-

mation, in very crowded spectra the couplings can often
hamper attempts to assign structure. It would thus be

desirable to obtain a proton spectrum with the couplings

removed, showing only singlets for each distinct proton.

One technique to obtain this has been the projection

along the 45� axis of a J-resolved 2D spectrum [1].

Unfortunately, due to phase-twist lineshape [2] in the

2D spectrum, the resolution of the resulting projection

has suffered. Methods have been proposed to combat
this problem, such as pseudo-echo filtering [3], or

sine-bell weighting of the signal [4], but these methods

degrade the sensitivity of the 2D spectrum, distort in-

tensities, and often do not offer a significant enhance-

ment to the projection. In this paper we apply the

regularized resolvent transform (RRT) to a 2D J-re-

solved data set in a novel way to obtain a high-resolu-

tion proton decoupled spectrum without calculating a
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projection from a 2D spectrum. The 1D projection is

calculated directly from the data to yield singlets that

are not hampered by the phase-twist lineshape.

RRT is a linear algebraic technique for high resolu-
tion spectral analysis of multidimensional NMR data. It

was introduced recently [5] as an extension of the filter

diagonalization method (FDM) [6–11] (also see the re-

view [12]). The main difference between the two methods

is that the RRT is a spectral estimator, i.e., it constructs

the spectrum without calculating the spectral parame-

ters, while FDM essentially constructs the line list prior

to the spectral estimation. In principle FDM provides
more information but is also more demanding than

RRT. RRT deals with ill-conditioned linear systems, a

very well studied problem (see, e.g., the tutorial [13]),

while FDM deals with ill-conditioned generalized ei-

genvalue problems, a more difficult problem (a package

to solve ill-conditioned generalized eigenvalue problems

named GUPTRI [14] exists, but we have not had success

in applying it to FDM). Unlike most other linear alge-
braic approaches, both methods are truly multidimen-

sional (i.e., are not reduced to processing 1D slices of

multidimensional data) and do not involve large
erved.
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matrices even when the data size is large. In both FDM
and RRT, the linear algebraic problems are solved in

small Fourier subspaces corresponding to small win-

dows in the frequency domain.

The usefulness of FDM has already been demon-

strated for the calculation of double absorption spectra

of purely phase modulated 2D data [8,9] or the direct

calculation of absorption mode 45� projections of the

2D J spectra, in which the proton multiplets are col-
lapsed into singlets [15]. The latter idea led to an inter-

esting generalization to the case of two new experiments,

the singlet-HSQC and singlet-TOCSY [16], which are,

respectively, 3D and 4D experiments. In these experi-

ments, one J dimension for 2D HSQC and two J di-

mensions for 2D TOCSY are added to the conventional

experiments, followed by construction of 2D 45� pro-

jections, and resulting in the 2D absorption-mode
spectra with singlets in place of the original multiplets.

In the latter applications, just 2 points along each J di-

mension were used, thus effectively employing only a few

2D data sets. In other words, in these 3D and 4D ex-

periments the experimental time was similar to that of

the conventional 2D experiments. However, these ap-

plications also revealed some problems, associated

mainly with the fact that the spectral widths in the J
dimensions are by about two orders of magnitude

greater than that of the proton chemical shift dimension.

The 45� direction then corresponds to �102 points in the

proton dimension and one point in the J dimension. In

[9,15,16] the construction of effective projected Hamil-

tonian(s) that are then diagonalized to yield the ultimate

45� projections required the solution of an additional ill-

posed linear algebraic problem. This led to instabilities
in the spectra. In [9,15], in order to get rid of the arti-

facts, regularization was carried out by extensive signal

averaging, while in [16] pseudo-noise averaging was im-

plemented. Both regularization approaches require

multiple applications of FDM and so result in a sub-

stantial increase of the cpu-time. An alternative to the

FDM averaging procedure, named FDM2K, to regu-

larize the spectra was also proposed [11]. Generally,
FDM2K works well, while requiring minimal compu-

tational effort, but its use for calculating 45� projections

may still require some work because of the need to solve

and, therefore, regularize, at least two consecutive ill-

posed generalized eigenvalue problems. The regulariza-

tion in RRT is more robust than in FDM2K giving a

more reliable result, while it is also controlled by the

regularization parameter q: larger values of q lead to
stronger artifact suppression and more uniform spectral

estimates but sacrifice the resolution. By integrating out

the J-dimension one can obtain a pseudo-absorption 45�
projection. This method would avoid the tricky scaling

problem, but would lose the advantage of a direct

method. Moreover, the integration must be done on a

very fine frequency grid, which may not be a problem in
the 2D case, but it becomes a numerical bottleneck in
3D and 4D experiments where J projections are of in-

terest [16].

Dissatisfaction with the previous methods provoked

an extensive search for a new method that is direct, fast,

and avoids the subtle scaling procedure, and led us to

the approach described in this paper. We interpolate the

signal on a new grid with the same sampling rate in the

two dimensions and then apply RRT to the new re-
sampled data to directly and efficiently compute a 45�
projection. The only drawback to this method is that the

intensities in the 45� projection are not quantitative, in

most cases.
2. Theory

2.1. Spectral representations of 2D J time signals

Consider a general complex valued 2D time signal

cðt;~ttÞ with t ¼ ns (n ¼ 0; . . . ;N � 1) and ~tt ¼ ~nn~ss
(~nn ¼ 0; . . . ; ~NN � 1) defined on an equidistant rectangular

time grid of size Ntotal ¼ N � ~NN . We use a convention in

which t corresponds to the acquisition time dimension.

By ‘‘tilde,’’ as in ~tt, we define the variables associated
with the J dimension. Generally the sampling rate ratio
~ss=s is a large number, of the order of 100, which is

practically justified by the small spectral width in the J-

dimension of the order of 100Hz; N is of the order of

103–105 and ~NN small (e.g., ~NN ¼ 16 and usually does not

exceed 128).

For a noiseless case we assume that the 2D data is

well represented by the form

cðt;~ttÞ ¼
XK
k¼1

dke�itxke�i~tt ~xxk ð1Þ

with the complex frequencies xk and ~xxk and amplitudes

dk characterizing the K spectral features in the 2D fre-

quency domain. For simplicity, the signal is assumed to

be phased, i.e., the amplitudes dk are assumed to be real.

The real part of a complex frequency defines the posi-

tion of the corresponding resonance and the imaginary

part, its width. Usually, one assumes that the signal

decays when t ! 1 and ~tt ! 1, which implies that all
the imaginary values are negative, however, this con-

straint may cause numerical and even conceptual

problems and will be implemented only in some special

cases. For noisy data the same model is used, however K
is no longer well defined, as it is now used to represent

both the true peaks and noise; the noise amplitudes are

allowed to be complex-valued and the noise frequencies

may have positive imaginary parts. Fortunately, in the
present framework K does not have to be an adjusting

parameter, e.g., we do not need to assume any particular

value for it. This avoids many potential difficulties, often
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present in other approaches designed to solve the har-
monic inversion problem. The assumption (1) with some

fixed K is only used as a reference and for derivations.

For demonstration purposes we generated a model

2D J signal using a predefined set of spectral parameters

fxk; ~xxk; dkg (k ¼ 1; . . . ;K) resembling the aromatic re-

gion of the proton spectrum of phenanthridinone. In

Fig. 1 (top) we show a 1D proton spectrum obtained by

Fourier transformation of the first increment of the
signal

IðxÞ ¼
Z 1

0

dtcðt; 0Þeixt: ð2Þ

From now on we will use the convention in which the

1D absorption spectrum is defined by

AðxÞ :¼ RefIðxÞg; ð3Þ
which assumes all amplitudes dk to be real. Clearly, if the

model (1) holds, IðxÞ can also be represented in terms of

the spectral parameters

IðxÞ ¼ i
X
k

dk
x � xk

: ð4Þ

An ideal 2D J spectrum (particularly, no strong

coupling artifacts) corresponds to all proton multiplets

aligned along the 45� direction in the 2D frequency

domain as shown in Fig. 1 (middle). In this idealized
case the corresponding 45� projection will consist of

singlets for each multiplet as shown in Fig. 1 (bottom).

The 2D spectrum in Fig. 1 was constructed using the

double-absorption expression in terms of the spectral

parameters:
Fig. 1. The three spectra are constructed from a list of frequencies

corresponding to the aromatic region of phenanthridinone. The top

spectrum is the Fourier transformation of the first increment of a 2D J

model signal constructed from the line list. The spectrum in the middle

is the ideal 2D J spectrum obtained if a double absorption spectrum

could be obtained. The bottom spectrum is the theoretical projection

obtained from this ‘‘double-absorption’’ 2D J spectrum.
A2Dðx; ~xxÞ ¼
X
k

Im
dk

x � xk

� �
Im

1

~xx � ~xxk

� �
: ð5Þ

By analogy with Eqs. (3) and (4) an absorption mode

projection is given by ApðxÞ :¼ RefIpðxÞg with

IpðxÞ ¼ i
X
k

dk
x � xk þ ~xxk

: ð6Þ

Note though that in theory for each peak the two line

widths are the same and, therefore, the difference

Imfxk � ~xxkg ¼ 0. This implies that the directly com-

puted projection ApðxÞ will consist of d-peaks centered

at frequencies x ¼ Refxk � ~xxkg, thus potentially lead-

ing to arbitrarily high resolution. (Note, that the finite
widths of the peaks in a 2D spectrum give finite widths

of the singlets in the projection, when the latter is ob-

tained by integration of the 2D spectrum.) However,

due to either experimental imperfections or numerical

errors Imfxk � ~xxkg is never exactly zero and, more

importantly, has an arbitrary sign, which for a positive

dk defines whether the corresponding peak will be

pointing up or down if Eq. (6) is used. One way to re-
move this ambiguity is to consider the quantity

Apðx þ iCÞ, which will turn each d-peak to a Lorentzian

with positive width C. Practically, for a sufficiently large

smoothing parameter C this procedure will flip all the

negative signs to positive. However, as will be discussed

later this procedure may still cause artifacts.

Unlike the conventional 1D absorption spectrum,

neither A2Dðx; ~xxÞ nor ApðxÞ can be computed or even
estimated by conventional means, that is, by Fourier

transformation of the purely phase modulated time

domain data cðt;~ttÞ. For instance, even though Eq. (6) is

formally represented by the Fourier integral of the data,

IpðxÞ ¼
Z 1

0

dtcðt;�tÞeitx; ð7Þ

the integration has to be performed along the line in the

2D time domain that is not available experimentally. As

such in the FT framework one would usually utilize the
absolute value spectrum. In order to enhance the reso-

lution (compromised by not using the absorption mode

spectrum, with its large dispersion mode wings) one can

implement heavy apodization functions (e.g., a sine-bell

gðtÞ ¼ sinðpt=T Þ) [4]:

I2Dðx; ~xxÞ ¼
Z T

0

dt
Z ~TT

0

d~tt cðt;~ttÞeixtei ~xx
~ttgðtÞ~ggð~ttÞ: ð8Þ

A 45� projection of jI2Dðx; ~xxÞj can now be obtained

by tilting it and then integrating over ~xx:

FpðxÞ ¼
Z

d ~xxjI2Dðx � ~xx; ~xxÞj: ð9Þ

The corresponding 2D FT spectrum and the pro-

jected spectrum are shown in Fig. 2 for a typical 2D data
set. Apparently, the singlets in the projected spectrum in



Fig. 2. The two spectra in this figure were obtained from a model 2D J

signal constructed to represent the aromatic region of phenanthridi-

none (as in Fig. 1). The top spectrum is the 2D FT of the signal,

weighted with a sine-bell function. The bottom spectrum is obtained by

integrating the 2D spectrum along the 45� direction.
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Fig. 2 are not significantly sharper than the original

proton multiplets (Fig. 1, top). Clearly, this procedure

leads to inferior resolution compared to that of the true

2D absorption spectrum or its projection, even when the

data is available over a large region in the 2D time do-

main. In the present paper we discuss various methods

to compute ApðxÞ or its analogues and present an effi-
cient and direct method based on RRT.

2.2. Signal resampling

For the reason mentioned above we wish to deal with

a 2D J signal that is sampled at the same rate in the two

time dimensions. At first glance this problem may seem

unimportant and, in our original papers on the subject,
its importance was not recognized. Indeed, it is irrele-

vant in the framework of the Fourier spectral analysis,

while its efficient and correct solution turns out to be

crucial for the RRT to become operationally easy to

implement. (Note again that in [9,15,16] the problem of

having different sampling rates occurred at a different

stage and its solution required a nontrivial numerical

procedure.)
There are two obvious ways to make the two time

steps the same. One is to make them both equal to ~ss.
While easy to implement, this will obviously lead to

folding artifacts. The other way is to reconstruct the

data on the new time grid with the same time step equal

to s by interpolating the slowly-varying original data in

the J-dimension

ynm :¼ cðns;msÞ ðn ¼ 0; . . . ;N � 1; m ¼ 0; . . . ;M � 1Þ
with M ¼ ð ~NN � 1Þ~ss=s þ 1. This procedure is justified
because the signal-to-noise ratio (SNR) in 2D J experi-

ments is usually high and the time evolution along the J-

dimension is slow (small coupling frequency). Ideally,

one could use true 2D interpolation or approximation

schemes. The effect of using sophisticated schemes is

unknown and will be explored in the future. Here we
implement the most primitive, 1D cubic spline interpo-
lation [17], which seems to suffice for our purposes. In

practice, one should ensure that the data being inter-

polated behaves well, and has no spurious points,

otherwise slight problems could be amplified by the in-

terpolation routine.

We can now rewrite the assumption (1) for the re-

sampled data in a more convenient form

ynm ¼
XK
k¼1

dkðukÞnð~uukÞm ð10Þ

with uk :¼ e�isxk and ~uuk :¼ e�is ~xxk .
For discretely sampled data as in Eq. (10) it is more

appropriate to replace the spectral representations (3)–

(6) arising from the Fourier integrals by that corre-

sponding to the discrete Fourier sums (see the discussion

in [12]). In particular, Eq. (3) is replaced by

IðxÞ ¼
X
k

sdk
1� uk=z

ð11Þ

with z :¼ e�isx and the 45� projection (6) is replaced by

IpðxÞ ¼ s
X
k

dk
1� uk=ðz~uukÞ

: ð12Þ

Note that Eq. (12) is essentially equivalent to Eq. (6)

as long as Imfxk � ~xxk � xg 
 ð2p=sÞ or equivalently

juk=ðz~uukÞj � 1. Here, the real part of Eq. (12),

Apðx þ iCÞ :¼ RefIpðx þ iCÞg, gives the true absorption

spectrum. However, we have found that the pseudo-

absorption spectrum Að2Þ
p ðxÞ :¼ jI ð2Þp ðxÞj with

I ð2Þp ðxÞ :¼ s2
X
k

dk
ðz~uuk � ukÞ2

ð13Þ

numerically behaves much better and, in particular, is
free from the drawbacks arising from the intrinsically

small widths. Unfortunately, jI ð2Þp ðxÞj is different from

the absorption spectrum: the amplitudes dk are not

squared, but the peak amplitudes in Eq. (13) are scaled

by the factor equal to Imfxk � ~xxk � xg (see the dis-

cussion in [12]). So narrow peaks in the pseudo-ab-

sorption spectrum will often be overemphasized in

jI ð2Þp ðxÞj.
2.3. Regularized resolvent transform

2.3.1. Noiseless case

First, assume that the data ynm satisfies the form of

(10) exactly. Consider two diagonalizable commuting

complex symmetric K � K matrices U and ~UU with the

complex poles uk and ~uuk being their eigenvalues:

U ¼
XK
k¼1

uk� k�
T
k ;

~UU ¼
XK
k¼1

~uuk� k�
T
k : ð14Þ

Given a column vector U satisfying
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dk ¼ UT� k

� �2
; ð15Þ

the assumption (10) can now be rewritten in an equiv-

alent form [7,6,9]

ynm ¼ UTUn ~UUmU: ð16Þ
Furthermore, using the definitions of U , ~UU , and U

(Eqs. (14) and (15)) we can rewrite the spectra (12) and
(13) as:

IpðxÞ ¼ zsUTðz ~UU � UÞ�1 ~UUU; ð17Þ

I ð2Þp ðxÞ ¼ s2UTðz ~UU � UÞ�2U: ð18Þ

The evaluation of Eqs. (17) and (18) can be done

using exclusively the available data ynm through the re-

lationship (16) without the explicit knowledge of the

auxillary objects U , ~UU , and U. The needed matrix ele-

ments are expressed in a Fourier subspace representing a

particular a priori chosen small spectral window

½xmin;xmax� in the proton chemical shift dimension,

xmax � xmin 
 2p=s;

and a small spectral window ½ ~xxmin; ~xxmax� in the J-di-
mension. The latter could either coincide or be within

the corresponding original Nyquist range (that is

already small)

~xxmax ¼ � ~xxmin 6 p=~ss:

Consider a rectangular uniformly spaced frequency

grid ðuj; ~uujÞ ðj ¼ 1; . . . ;KwinÞ inside the chosen 2D

window (see Fig. 3):
Fig. 3. An illustration of the Fourier basis functions for a particular

frequency window. Note that although the spectral widths in both

dimensions of the resampled signal are equal, the basis functions in the

J dimension are entirely contained in the spectral region defined by the

original experimental time step.
xmin < uj < xmax; ~xxmin < ~uuj < ~xxmax:

The corresponding grid spacings are not adjustable

parameters and are set to

Du ¼ 4p
Ns

; D~uu ¼ 4p
Ms

:

The 2D Fourier basis fWjg ðj ¼ 1; . . . ;KwinÞ is

defined by

Wj :¼
XN=2�1

n¼0

XM=2�1

m¼0

ðU=zjÞnð ~UU=~zzjÞmU ð19Þ

with zj :¼ e�isuj and ~zzj :¼ e�is~uuj . (Without any sacrifice

we assumed both N and M to be even integers.)

By the bold characters U, ~UU, and S we define the

Kwin � Kwin matrix representations of, respectively, U ,
~UU , and I (the unit matrix) in the Fourier subspace:

Sjj0 :¼ WT
j Wj0 ; Ujj0 :¼ WT

j UWj0 ; ~UUjj0 :¼ WT
j
~UUWj0 :

We will also need the two Kwin-dimensional column

vectors:

Yj :¼ WT
j U; ~YYj :¼ WT

j
~UUU:

The elements of U, ~UU, S, Y, and ~YY can be expressed

exclusively in terms of the data ynm [6]. For completeness
the relevant expressions are given in Appendix A. Using

these expressions we can evaluate the spectra (17) and

(18) in the Fourier subspace (see [5,12] for a derivation):

IpðxÞ ¼ zsYTR�1 ~YY; ð20Þ

I ð2Þp ðxÞ ¼ s2YTR�1SR�1Y ð21Þ

with the frequency dependent Kwin � Kwin matrix pencil

R ¼ z~UU � U.
2.3.2. Regularization

For data sets satisfying Eq. (10) exactly the above

two spectral estimation formulas converge very quickly

to the exact spectra for frequencies x inside the window,

which define the Fourier basis (see Fig. 3). However,

practically R may be very ill-conditioned and so these

expressions implemented naively may contain artifacts

or even give meaningless results. To remove the ill-
conditioning we use the Singular Value Decomposition

(SVD) of R,

R ¼ VyRW ð22Þ

with unitary matrices V and W and R ¼ diagðrnÞ, real

and diagonal. Since we can now write R�1 ¼ WyR�1V,

the problem then becomes that of regularizing the di-
agonal matrix R�1. Here the truncated SVD (i.e., setting

½R�1
q �nn ¼ 0 for very small singular values rn below cer-

tain threshold) is not recommended. Instead, the more

uniform regularization may be employed

R�1
q ¼ ðR2 þ qIÞ�1R: ð23Þ
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Even though the SVD based regularization is more
computationally expensive than other methods [5], we

prefer SVD because it allows us to generate the spectra,

e.g., I ð2Þp ðxÞ, at many values of q simultaneously for little

additional cost.

The RRT expressions ((20) and (21)) for the spectral

estimation of the 45� projections are new and constitute

the main result of this paper. They are applicable to

experimental data, which does not necessarily fit the
model (1) exactly, even though it was assumed in the

derivation. This will be demonstrated in the next section.
3. Experimental

As a test of our method we choose a simple repre-

sentative carbohydrate: sucrose. The 1D proton spec-
trum is given in Fig. 4. In the proton dimension, 1024

points were collected, and 64 in the J dimension. The

pulse sequence was a double spin-echo 2D-J experiment

[8] shown in Fig. 5. Broadband inversion pulses, 60 ls in
duration [18], were used to ensure that proper inversion
Fig. 4. Aliphatic region of the 1D proton spectrum of sucrose. The

sample dissolved in D2O, was run on a Varian Unity-INOVA

500MHz spectrometer. In later figures we consider only the most

crowded region of this spectrum, from 3.70 to 3.94 ppm. This was

processed using 16 384 points.

Fig. 5. Pulse sequence for the double spin-echo (DSE) 2D-J experi-

ment. A standard 90� pulse and two broadband inversion 180� pulses

60 ls in duration were used. A slight delay was added to each t1 in-

crement in order to ensure that the resulting signal could be interpo-

lated. In addition, a pre-saturation pulse was applied to the water

signal in order to decrease its contribution to the rest of the spectrum.
was obtained. In addition, a long (1 s), low-power pre-
saturation pulse was applied to the HOD resonance, to

reduce the effect of the residual water on the spectrum.
4. Numerical results

The calculations using RRT were performed using

only part (800� 16) of the whole signal. We note here
that truncation of the signal along the aquisition di-

mension (from N ¼ 1024 to N ¼ 800 in the present case)

is beneficial for RRT as beyond certain time the tail of

the FID does not provide any new information while it

adds more noise. The number of basis functions in each

window (Kwin) was either 80 or 160. The regularization

was applied using the SVD method to generate several

spectra over a range of regularization parameters
(q ¼ 0:0005 to 0.05). The spectra did not differ much
Fig. 6. The traditional method for processing 2D-J signals. The upper

2D spectrum is the normal cosine-apodized FT of the data. By con-

structing the 2D FT with sine-bell apodization (lower 2D spectrum),

the projection along the 45� axis will yield better resolution (bottom

trace). This trace should be absent of proton coupling. For compari-

son, the coupled 1D spectrum is presented at the top. These were all

calculated using the full signal (1024� 64).
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over this large range, showing that the regularization is
very robust. A small smoothing (C ¼ 0:1Hz) was also

employed to reduce the effect of amplitude distortion by

the pseudo-absorption formula.

For the FT, the best projections were obtained using a

sine-bell weighting function [4]. While this procedure

makes the 2D spectrum more difficult to analyze, it

minimizes the artifacts discussed in the Introduction, and

improves the resolution of the projection. The 2D FT of
the data (with both cosine and sine-bell apodization)

using 1024� 64 points is given in Fig. 6 along with the

regular 1DFT and the 45� projection of the 2D spectrum.

The comparison of RRT with the FT using 16 points in

the J-dimension is given in Fig. 7. Note that it is not

possible to construct the sine-bell weighted spectrum for

RRT, so the FT sine-bell spectrum is compared to the

RRT pseudo-absorption spectrum [5]. It is evident that
even with the indirect calculation of the 45� projection
Fig. 7. A comparison of RRT with FT using only 16 points in the J-

dimension. Both spectra have been calculated by constructing the 2D

spectrum, and projecting along the 45� axis. While the FT spectrum

has been apodized with a sine-bell function, the RRT spectrum has

been constructed using the pseudo-absorption formula, and smoothed

using gaussian convolution. The RRT result offers only a slight reso-

lution enhancement, because the projection is not computed directly.
(i.e., via construction of the 2D spectrum) RRT offers
resolution enhancement over the FT. However, even with

this improvement the RRT 45� projection is not well re-

solved for this crowded spectral region.

Now we demonstrate that using the direct calculation

of the 45� projection (i.e., without constructing the 2D

spectrum) as described in this paper, a significant im-

provement can be achieved. The results for the most

crowded region of the spectrum are shown in Fig. 8 and
compared with the other methods. Even using the short

signal (800� 16) the projection computed directly by

RRT gives resolution that is better than that obtained

with the FT of the full signal (1024� 64), and better than

that from projection of the 2D RRT spectrum. All of the

resonances for sucrose can now be resolved, including the

two methylene resonances (�3.82 ppm) previously ob-

scured. In addition, artifacts due to the experiment, such
as strong coupling between resonances, can be identified.

This direct method thus represents a vast improvement in

processing J-resolved spectra.
5. Conclusions

Due to the difficulty of spectral processing, J-resolved
spectroscopy has been limited in its applications. This
Fig. 8. Comparison of the 1D projected spectra for each method. For

comparison the 1D FT is presented at the bottom. Finally the result

from the method presented here is at the top. The direct calculation of

the projection offers a considerable resolution advantage over the in-

direct approaches. Marked with an asterisk are peaks that are due to

strong coupling.
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has been due to the problem of obtaining a 45� projec-
tion of a magnitude 2D FT spectrum. Although an

approach, based on FDM, of calculating directly the 45�
projection was already proposed [15], it had certain

drawbacks. Here we have revisited this approach. A

tricky ‘‘scaling’’ problem was replaced by a simple signal

resampling using interpolation, which produces a 2D

time signal with the same spectral ranges in the two

dimensions. The resampled data is then processed by
RRT (or possibly with FDM) to directly generate a

pseudo-absorption 45� projection. The resulting method

yields excellent resolution of the uncoupled proton

spectrum, even in the most crowded regions of the

spectrum. Apart from the resolution enhancement, this

method offers a significant experimental time savings in

that not as much data are required for the calculation.

Finally, we point out that in the present work we
have not made an effort to optimize the computer time

for evaluating the expressions (20) and (21). Namely,

computation of I ð2Þp ðxÞ at many values of x requires

multiple solution of the linear least squares problem

RðxÞXðxÞ ¼ Y ð24Þ
with the ill-conditioned matrix-pencil RðxÞ ¼ z~UU � U

and z :¼ e�isx. The approach based on RRT is robust,

but may not be optimal in other respects. For example,

solving the corresponding generalized eigenvalue prob-

lem (as in FDM) and then evaluating XðxÞ at many
values of x is much cheaper. Another significant com-

putational saving may be achieved if Eq. 24 is solved

iteratively by a conjugate gradient method with the

initial guess for XðxÞ taken from the solution previously

obtained for a nearby value of x. These and other issues

will be investigated in our forthcoming publications.
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Appendix A

The elements of the overlap matrix S are computed

by

Sjj0 ¼ r
X
p¼0;1

ð�1Þpðzj=zj0 ÞpN=2

1� zj=zj0
~rr
X
~pp¼0;1

ð�1Þ~ppð~zzj=~zzj0 ÞpM=2

1� ~zzj=~zzj0

�
Xðpþ1ÞðN=2�1Þ

n¼pN=2

Xð~ppþ1ÞðM=2�1Þ

m¼~ppM=2

z�n
j ~zz�m

j ynm; ðA:1Þ

where r and ~rr define the symmetrization operators over
the corresponding pairs of variables:
rgðzj; zj0 Þ ¼ gðzj; zj0 Þ þ gðzj0 ; zjÞ;
~rrgð~zzj;~zzj0 Þ ¼ gð~zzj;~zzj0 Þ þ gð~zzj0 ;~zzjÞ:

For zj ¼ zj0 and ~zzj 6¼ ~zzj0 we have

Sjj0 ¼ ~rr
X
~pp¼0;1

~zzj
ð�1Þ~ppð~zzj=~zzj0 ÞpM=2

1� ~zzj=~zzj0

XN�2

n¼0

Xð~ppþ1ÞðM=2�1Þ

m¼~ppM=2

� z�n
j ~zz�m

j ynmðN=2� jN=2� n� 1jÞ; ðA:2Þ

which can trivially be rewritten for the symmetric case of

zj 6¼ zj0 and ~zzj ¼ ~zzj0 . For the case of both zj ¼ zj0 and

~zzj ¼ ~zzj0 , i.e., the diagonal elements of the U-matrices, we

have

Sjj ¼
XN�2

n¼0

XM�2

m¼0

z�n
j ~zz�m

j ynmðN=2� jN=2� n� 1jÞ

� ðM=2� jM=2� m� 1jÞ: ðA:3Þ

As can be seen the calculation of the S matrix ele-

ments require the knowledge of ynm for n ¼ 0; . . . ;N � 2

and m ¼ 0; . . . ;M � 2. To compute the U and ~UU matri-

ces exactly the same equations ((A.1)–(A.3)) are applied

to the shifted data arrays, respectively, ynþ1;m and yn;mþ1

(see [12] for more details).
The matrix elements of the arrays Y and ~YY in terms of

the signal are given by:

Yj ¼
XN=2�1

n¼0

XM=2�1

m¼0

z�n
j ~zz�m

j ynm;

~YYj ¼
XN=2�1

n¼0

XM=2�1

m¼0

z�n
j ~zz�m

j yn;mþ1:

ðA:4Þ
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